Multiscale Modeling with Extended Bridging Domain Method∗
نویسندگان
چکیده
This Chapter describes the concurrent coupling of atomistic methods with continuum mechanics. Such models are useful in the study of phenomena such as fracture and dislocation dynamics, where molecular mechanics and/or quantum mechanics models are required for phenomena such as bond breaking, but the relevant configuration is far too large to permit a completely atomic description. To make such problems computationally tractable, the quantum/atomistic model must be limited to small clusters of atoms in the vicinity of a domain of interest where such high resolution models are necessary and a continuum method should be used for the rest of the domain, see e.g. Khare et al. [1, 2]. In the remainder of the domain, where no bond breaking occurs, the continuum description permits much less expensive computations with sufficient accuracy to describe the behavior of the system. This chapter describes two types of concurrent models
منابع مشابه
A Strategy for Simulation-based Design of Multiscale, Multi-functional Products and Associated Design Processes
1 Corresponding Author, Professor, Associate Chair, The GW Woodruff School of Mechanical Engineering, Savannah Campus, and ASME Fellow Email: [email protected], Phone: (404) 894-8412, Fax: (404) 894-9342 ABSTRACT Simulation Based Engineering Science (SBES) is an evolving interdisciplinary research area rooted in the methods for modeling multiscale, multi-physics events. The objectiv...
متن کاملA multiscale modeling technique for bridging molecular dynamics with finite element method
Article history: Received 1 March 2013 Accepted 30 June 2013 Available online 12 July 2013
متن کاملThe Bridging Domain Multiscale Method and Its High Performance Computing Implementation
This paper presents a study on the feasibility of applying high performance computing (HPC) to the Bridging Domain Multiscale (BDM) method, so that featured scalable multiscale computations can be achieved. Wave propagation in a molecule chain through an entire computational domain is employed as an example to demonstrate its applicability and computing performance when multiscale-based simulat...
متن کاملMechanical modeling of graphene using the three-layer-mesh bridging domain method
Recently developed three-layer-mesh bridging domain method (TBDM) enhanced the conventional bridging domain method (BDM) by (1) mitigating the temperature cooling effect on the atoms in the bridging domain, and (2) employing a mesh-independent physics-based discrimination between thermal and mechanical atomic motions. In this paper, we present the new enhancements for the TBDM to achieve an app...
متن کاملAn Extended Bridging Domain Method for Continuum-Atomistic Simulations of Discontinuities
In this presentation we will discuss a continuum multiscale framework which combines the Bridging Domain Method (BDM) of Xiao and Belytschko [1] with the eXtended Finite Element Method (XFEM) of of Moës et al. [2]. The BDM is a hierarchical overlapping domain decomposition scheme. Material in the coarse-scale domain is modelled as a continuum using XFEM and in the fine-scale domain by Molecular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008